library(tidyverse)
library(lubridate)
library(magrittr)
library(FactoMineR)
library(factoextra)
library (uwot)
library(GGally)
library(rsample)
library(ggridges)
library(xgboost)
library(recipes)
library(parsnip)
library(glmnet)
library(tidymodels)
library (skimr)
library (VIM)
library(visdat)
library (ggmap)
library(ranger)

library(vip)

Exam

Andreas, Kristoffer, Mikkel & Simon

22/9/2021

Loading the data

data_start <- read_csv("startup data.csv",

col_types = cols(founded_at = col_date(format = "%m/%d/%Y")
first_funding_at = col_date(format = "Ym/%d/%Y"),
last_funding_at = col_date(format = "Ym/%d/%Y")))

Data cleaning / EDA

Format data

First we look at what type of data we are dealing with.

vis_dat(data_start)

3

2 &
RS &
bedzbe&f&j > N
. o & o
¢ T E & § S & S &
© N & AR & & R & & ¥ O @ Q &
2 ¢’ & & @ S © > & L & & o & @ RSPt & > L & & ¢
& S TN L Fo FEEE S S @S o Ff e FIFTEFTITFT o FF T &
&7 S EI ST TS ETTF TS THFITETE TS FEE S EE S PSS S ol oo o S
L I N R I i i e N N N i R I N I R R i U RV Y A N R N

Observations

Type
character
Date
numeric

NA

We also show the amount of NA’s in text, so that we can see how many NA’s each variable contains.

is.na(data_start) %>% colSums()

Unnamed: O state_code
0 0
#i#t longitude zip_code
#it 0 0
city Unnamed: 6
0 493

latitude
0

id

0

name

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

labels

0
first_funding_at
0
age_last_funding_year
0
relationships
0

milestones

0

is_NY

0
is_otherstate
0

is_web

0
is_advertising
0

is_biotech

0

object_id

0

has_roundA

0

has_roundD

0

status

0

founded_at

0
last_funding_at
0
age_first_milestone_year
152
funding_rounds
0

state_code.1

1

is_MA

0

category_code

0

is_mobile

0

is_gamesvideo

0

is_consulting

0

has_VC

0

has_roundB

0
avg_participants
0

Geographical visualisation

First we visualize the latitude and longitude of the observations.

data_start %>%

ggplot(aes(x = longitude, y =
geom_point(color =

latitude)) +

"cornflowerblue")

closed_at

588
age_first_funding_year
0
age_last_milestone_year
152
funding_total_usd
0

is_CA

0

is_TX

0

is_software

0

is_enterprise

0

is_ecommerce

0
is_othercategory
0

has_angel

0

has_roundC

0

is_topb00

0

60 - °

[J
[)
50 -
’ ®
g . :
E ‘ 0 ° %4
5 cop o
AL | ‘ ...
40 d e .. s
‘ & o
o
° °
o .0 .
[}
‘. .
[]
30- g °
..
]
-120 -80 -40 0

longitude

We can see that the dataset contain observations outside of the US. We remove these by filtering.
data_start %<>%
filter(longitude < -40)

We can look how the startups perform geographically. We set the color equal to “status” to separate the
startups by whether they’re acquired or closed. Furthermore we set the size equal to “funding total usd”
to make the size of the dots dependent on the amount of funding.

gmplot(x = longitude,

y = latitude,
data = data_start,
geom = "point",

color = status,

size = funding_total_usd,

alpha = 0.4) +
scale_alpha(guide = 'none')

funding_total_usd
® 1e+09
@ 2:+09
@ 3c+09

@ :e+00
@ -

status
® acquired
® closed

Data preparation process

We take a quick look at the data. First we divide the “funding_ total_usd” by 1000 to make the tables more
readable. The “funding_ total_usd” will also be renamed to “total”.

data_start %<>%
mutate(total = funding_total_usd / 1000) %>%
select(!funding_total_usd)

skim(data_start)

Table 1: Data summary

Name data_ start
Number of rows 919
Number of columns 49

Column type frequency:

character 11
Date 3
numeric 35
Group variables None

Variable type: character

skim_ variable n_missing complete rate min max empty n_unique whitespace

state__code 0 1.00 2 2 0 35 0
zip_ code 0 1.00 4 14 0 380 0
id 0 1.00 3 8 0 918 0
city 0 1.00 2 19 0 219 0
Unnamed: 6 492 0.46 11 28 0 249 0
name 0 1.00 3 39 0 918 0
closed__at 585 0.36 8 10 0 202 0
state_code.l 1 1.00 2 2 0 35 0
category__code 0 1.00 3 16 0 35 0

skim_ variable n_ missing complete rate min max empty n_unique whitespace
object_id 0 1.00 3 8 0 918 0
status 0 1.00 6 8 0 2 0
Variable type: Date
skim_variable n_missing complete_rate min max median n__unique
founded_ at 0 1 1984-01-01 2013-04-16 2006-01-01 217
first_ funding at 0 1 2000-01-01 2013-11-20 2007-09-01 583
last_ funding_ at 0 1 2001-01-01 2013-11-20 2009-12-16 677
Variable type: numeric
skim__variable n_missing complete_rate mean sd pO p25 p50 p75
Unnamed: 0 0 1.00 572.44 333.75 1.00 282.50 578.00 866.50
latitude 0 1.00 38.45 3.60 25.75 37.39 37.78 40.73
longitude 0 1.00 -104.00 21.30 -122.76 -122.20 -118.39 -77.31
labels 0 1.00 0.65 0.48 0.00 0.00 1.00 1.00
age_first_ funding year 0 1.00 2.24 2.51 -9.05 0.58 1.45 3.58
age_last_ funding_year 0 1.00 3.94 2.97 -9.05 1.67 3.55 5.56
age_first_ milestone_ year 151 0.84 3.07 2.98 -14.17 1.00 2.58 4.70
age_last_ milestone_ year 151 0.84 4.77 3.21 -7.01 2.46 4.50 6.75
relationships 0 1.00 7.71 7.28 0.00 3.00 5.00 10.00
funding_rounds 0 1.00 2.31 1.39 1.00 1.00 2.00 3.00
milestones 0 1.00 1.84 1.32 0.00 1.00 2.00 3.00
is. CA 0 1.00 0.53 0.50 0.00 0.00 1.00 1.00
is. NY 0 1.00 0.12 0.32 0.00 0.00 0.00 0.00
is. MA 0 1.00 0.09 0.29 0.00 0.00 0.00 0.00
is. TX 0 1.00 0.05 0.21 0.00 0.00 0.00 0.00
is_ otherstate 0 1.00 0.22 0.41 0.00 0.00 0.00 0.00
is_ software 0 1.00 0.17 0.37 0.00 0.00 0.00 0.00
is_ web 0 1.00 0.16 0.36 0.00 0.00 0.00 0.00
is_ mobile 0 1.00 0.09 0.28 0.00 0.00 0.00 0.00
is_ enterprise 0 1.00 0.08 0.27 0.00 0.00 0.00 0.00
is_ advertising 0 1.00 0.07 0.25 0.00 0.00 0.00 0.00
is_ gamesvideo 0 1.00 0.06 0.23 0.00 0.00 0.00 0.00
is__ecommerce 0 1.00 0.03 0.16 0.00 0.00 0.00 0.00
is_ biotech 0 1.00 0.04 0.19 0.00 0.00 0.00 0.00
is_ consulting 0 1.00 0.00 0.06 0.00 0.00 0.00 0.00
is_ othercategory 0 1.00 0.32 0.47 0.00 0.00 0.00 1.00
has VC 0 1.00 0.33 0.47 0.00 0.00 0.00 1.00
has_angel 0 1.00 0.25 0.44 0.00 0.00 0.00 1.00
has roundA 0 1.00 0.51 0.50 0.00 0.00 1.00 1.00
has_ roundB 0 1.00 0.39 0.49 0.00 0.00 0.00 1.00
has_roundC 0 1.00 0.23 0.42 0.00 0.00 0.00 0.00
has_roundD 0 1.00 0.10 0.30 0.00 0.00 0.00 0.00
avg_ participants 0 1.00 2.84 1.88 1.00 1.50 2.50 3.78
is_ top500 0 1.00 0.81 0.39 0.00 1.00 1.00 1.00
total 0 1.00 25403.73 190039.60 11.00 2725.00 10000.00 24605.27

We start by removing columns that are undefined when loading the dataset and columns which show the
same things. We also remove variables like longitude and latitude, which doesn’t seem to bring much insight
to the ongoing analysis.

data = data_start %>%
select(!c("Unnamed: 0, “Unnamed: 6, state_code.l, object_id, avg_participants,
has_roundA, has_roundB, has_roundC, has_roundD, zip_code, id, city, name,
latitude, longitude, labels))

We divide the data into different groups and then look at the data to see where the distribution seem to
differ depending on the status of the startup. We use geom__density_ ridges to do this.

jobs = data %>%
select(is_software, is_web, is_mobile, is_enterprise, is_advertising, is_gamesvideo,
is_ecommerce, is_biotech, is_consulting, is_othercategory, status)

state = data %>%
select(is_CA, is_TX, is_MA, is_NY, is_otherstate, status)

dummies = data %>’
select (is_top500, has_angel, has_VC, status)

par (mfrow=c(1,3))
jobs %>%
select(status, is_numeric) %>%
gather(variable, value, -status) />%
ggplot(aes(y = as.factor(variable),
fill = as.factor(status),
x = percent_rank(value))) +
ggridges: :geom_density_ridges(alpha = 0.75)

Picking joint bandwidth of 0.0633

is_web -

is_software =

is_othercategory -

is_mobile -

as.factor(status)

is_gamesvideo -

acquired

closed

1)

is_enterprise -

as.factor(variable)

is_ecommerce =

is_consulting -

is_biotech -

is_advertising =

0.0 0.4
percent_rank(value)

state %>%
select(status, is_numeric) %>%
gather(variable, value, -status) />%
ggplot(aes(y = as.factor(variable),
fill = as.factor(status),
x = percent_rank(value))) +
ggridges: :geom_density_ridges(alpha = 0.75)

Picking joint bandwidth of 0.0733

|

0.8

iS_TX A e —
)
3
‘= is_otherstate -
©
<
S
% A
u= is_NY -
)
@©
is_MA - I
is CA-

0.0 0.4 0.8
percent_rank(value)

dummies %>%
select(status, is_numeric) %>%
gather(variable, value, -status) />%
ggplot(aes(y = as.factor(variable),
fill = as.factor(status),
x = percent_rank(value))) +
ggridges: :geom_density_ridges(alpha = 0.75)

Picking joint bandwidth of 0.0625

as.factor(status)
acquired

closed

o
o .

is_top500 -
© 5P as.factor(status)
©
< acquired
)
3] closed
8
% has_VC-

has_angel -

0.00 0.25 0.50 0.75
percent_rank(value)

By looking at the distribution plot we choose the variables that seem to be able to predict whether the
startup will close or remain acquired.

Because of the above we drop the state and job variables plus the VC and angel dummies, but we keep
is_ top500 and then we skim the data again.
data %<>%
select(-c(is_CA, is_TX, is_MA, is_NY, is_otherstate, is_software, is_web, is_mobile,
is_enterprise, is_advertising, is_gamesvideo, is_ecommerce, is_biotech,
is_consulting, is_othercategory, state_code, category_code, has_angel,
has_VC))

skim(data)

Table 5: Data summary

Name data
Number of rows 919
Number of columns 14

Column type frequency:

character 2
Date 3
numeric 9
Group variables None

10

Variable type: character

skim_ variable n_ missing complete rate min max empty n_unique whitespace

closed_at 585 0.36 8 10 0 202 0
status 0 1.00 6 8 0 2 0

Variable type: Date

skim variable n_missing complete rate min max median n_ unique
founded__at 0 1 1984-01-01 2013-04-16 2006-01-01 217
first_ funding_at 0 1 2000-01-01 2013-11-20 2007-09-01 583
last_ funding_at 0 1 2001-01-01 2013-11-20 2009-12-16 677

Variable type: numeric

skim_ variable n_missing complete_rate mean sd pO p25 pb0 P75
age_ first_ funding year 0 1.00 2.24 2,51 -9.05 0.58 1.45 3.58
age_last_ funding year 0 1.00 3.94 2.97 -9.05 1.67 3.55 5.56
age_first_ milestone_ year 151 0.84 3.07 2.98 -14.17 1.00 2.58 4.70
age_ last_ milestone_ year 151 0.84 4.77 3.21 -7.01 2.46 4.50 6.75
relationships 0 1.00 7.71 7.28 0.00 3.00 5.00 10.00
funding_ rounds 0 1.00 2.31 1.39 1.00 1.00 2.00 3.00
milestones 0 1.00 1.84 1.32 0.00 1.00 2.00 3.00
is_ top500 0 1.00 0.81 0.39 0.00 1.00 1.00 1.00
total 0 1.00 25403.73 190039.60 11.00 2725.00 10000.00 24605.27

We still have 8 numerical variables and 3 date variables we haven’t taken a closer look at so that is what
we're gonna do now. We again use the geom_ density_ridges to look at the relevant variables.

data %>%
select(status, is_numeric, !is_top500) %>%
gather(variable, value, -status, -is_top500) %>%
ggplot(aes(y = as.factor(variable),
fill = as.factor(status),
x = percent_rank(value))) +
ggridges: :geom_density_ridges(alpha = 0.75)

Picking joint bandwidth of 0.0708

11

total - 44

relationships -

milestones -

last_funding_at -

@ :

= funding_rounds -

8 as.factor(status)
g founded_at -

= acquired

o i :

13 first_funding_at - closed

3

%)

@©

closed_at-

age_last_milestone_year -
age_last_funding_year -

age_first_milestone_year -

age_first_funding_year -

0.0 0.4 0.8 1.2
percent_rank(value)

The above plot shows, that relationships, milestones, funding_total usd, funding rounds, closed at, both
first and last milestone_year and last_ funding_ year seems to impact whether or not a firm gets acquired or
not. Closed_at will not be used because it contains almost 600 missing observations which is close to 66%
of all observations. Founded at will not be used either simply because there doesn’t seem to be that big of
a difference in the density plots. And using both first and last milestone year would maybe be irrelevant
because they somehow nearly show the same thing. so we drop them. First and last funding at doesn’t
show any significance either, so those also gets dropped.

data%<>%
select(!c(age_last_milestone_year, closed_at, age_first_funding_year,founded_at,
first_funding_at, last_funding_at))

Now we are left with only our status variable and our 7 numerical variables of interest. Now we check for
missing values in our remaining variables.

data %>%
summarise_all(funs(sum(is.na(.))))

Warning: “funs() ~ was deprecated in dplyr 0.8.0.
Please use a list of either functions or lambdas:
##

Simple named list:

list(mean = mean, median = median)

##

Auto named with “tibble::1st() ":

tibble::1st(mean, median)

##

Using lambdas

12

list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))

A tibble: 1 x 8
age_last_funding ~ age_first_mileston~ relationships funding_rounds milestones

<int> <int> <int> <int> <int>
1 0 151 0 0 0
... with 3 more variables: is_top500 <int>, status <int>, total <int>

The above states that the age first__milestone_ year has 152 missing values. The problem with this variable
is, that if we remove those rows, we lose 16.4% of our observations, and we cant just replace the NA’s with
something else like zero, because that would just manipulate our data. So the solution we have come up
with is to make them into intervals and then just pick one of the intervals to be used in our analysis.

data %<>%
mutate(age_first_milestone_year= ifelse(age_first_milestone_year <0, "before year 0",
ifelse(age_first_milestone_year <= 3 , "[0-3]",
ifelse(age_first_milestone_year <= 6, "]3-6]",
ifelse(age_first_milestone_year >6, "over 6",""))))) %>%
mutate(age_first_milestone_year= replace_na(age_first_milestone_year, "no milestone"))

data %>%
filter(age_first_milestone_year == "before year 0")%>Y%
count (status)

A tibble: 2 x 2

status n

<chr> <int>

1 acquired 25

2 closed 19

data %<>%
mutate("is_before_start" = as.numeric(age_first_milestone_year == "before year 0")) %>%
mutate("is_0:3" = as.numeric(age_first_milestone_year == "[0-3]")) %>%
mutate("is_3:6" = as.numeric(age_first_milestone_year == "]3-6]1")) %>%
mutate("is_6<" = as.numeric(age_first_milestone_year == "over 6")) %>%
mutate("is_no_milestone" = as.numeric(age_first_milestone_year == "no milestone"))

data %<>%
select(!c(age_first_milestone_year, is_before_start, “is_3:6", “is_6<°, is_no_milestone))

We pick the interval zero to three years, so we drop the rest, which means that firms achieved their first
milestone when they were between 0 and 3 years old. We pick this interval because we wanna investigate
whether it is positive or not in terms of getting acquired for a firm to get their first milestone quick eg. in
the first couple of years.

And this conclude our variable selection which now will be explained more thoroughly in the stakeholder.

colnames(data)

[1] "age_last_funding_year" "relationships" "funding_rounds"
[4] "milestones" "is_top500" "status"

[7] "total" "is_0:3"

Then we check for outliers

data_plot = data %>’
select(!c("1s_0:37, is_top500, status))

13

ggplot(gather(data_plot), aes(value)) +
geom_histogram(bins = 10) +

facet_wrap(~key, scales = 'free_x')
age_last_funding_year funding_rounds milestones
750 -
500 -
250 - .
0 L 1 1 1 1 1 1 1 Ii 1 1 1 1 _I_
c -10 0 10 20 0.0 2.5 5.0 7.5 10.0 0 2 4 6
>
3 relationships total
750 -
500 -
250 -
0 - S
1 1 1 1 1 1 1 1
0 20 40 60 0e+00 2e+06 4e+06 6e+06
value

data),>’ arrange(desc(total))

A tibble: 919 x 8

age_last_funding_y~ relationships funding_rounds milestones is_top500 status
<dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 9.42 19 4 2 1 acquir~
2 3.96 5 2 3 1 closed
3 4.53 37 5 2 1 acquir~
4 11.9 29 7 3 1 acquir~
5 7.25 4 6 0 1 acquir~
#t 6 6.42 6 8 2 1 closed
7 15.0 7 1 1 closed
8 7.16 1 3 0 1 closed
9 3.47 38 5 3 1 acquir~
10 11.2 3 4 2 1 acquir~
... with 909 more rows, and 2 more variables: total <dbl>, is_0:3 <dbl>

data %<>%
filter (total < 5700000)

data_plot = data %>
select(!c(is_0:37, is_top500, status))
ggplot(gather(data_plot), aes(value)) +
geom_histogram(bins = 10) +

14

facet_wrap(~key, scales = 'free_x')

age_last_funding_year funding_rounds milestones

600 -
400 -
200 -
0 . L 1 T —1 [—1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
c -10 0 10 20 0.0 25 5.0 7.5 10.0 0 2 4 6 8
S
3 relationships total
600 -
400 -
200 -
0 L 1 1 1 1 1 1 1 -
0 20 40 60 0e+00 2e+05 4e+05
value

We removed the outlier in the variable “total” as this value was 10x larger than the second largest
observation.

Now we move on to unsupervised machine learning.

Unsupervised ML

We start by performing dimensionality reduction on our data in the form of PCA, but before we can do that,
we need to examine our data to figure out if we need to scale it. We do this by calculating the mean and
standard deviations of the variables.

options(scipen = 999)

data_num = data %>%
select_if (is.numeric)

s_deviation=apply(data_num,2, sd)
meanl=colMeans (data_num)

scale= as.data.frame(s_deviation, row.names = c("sd"))%>%

cbind(as.data.frame(meanl, row.names = "mean"))%>%
print ()

s_deviation meanl
age_last_funding_year 2.9620686 3.9290531

15

relationships
funding_rounds
milestones
is_topb500

total
is_0:3

We can se the data is going to need scaling to perform the PCA, because our variables are not on the same
scale. Namely “total” seems much larger. We also have some dummy variables which only take a value of
either 0 or 1, so these will also be on a different scale then the rest.

PCA

We scale the data by setting the argument scale.unit to TRUE and then we run the PCA. Further we can
only run our PCA on numeric variables so we use the data subset just created above “data_ num?”.

res_pca <- data_num %>’

O = = N

31631.
0.

.2746264 7.7026144
.3932926 2.3093682
.3242545 1.8420479
.3930135 0.8093682
2901824 19222.2531721
4939050 0.4204793

PCA(scale.unit = TRUE, graph =FALSE)

Now we have our PCA we can create a screeplot to pick the number of dimensions to use.

res_pca %>%
fviz_screeplot(addlabels = TRUE,

= theme_gray())

ncp = 10,
ggtheme
Scree plot

Percentage of explained variances

32.8%

3 4
Dimensions

eig.val = get_eigenvalue(res_pca); eig.val

##
Dim.1

eigenvalue variance.percent cumulative.variance.percent
32.827585

2.2979309

16

32.82758

Dim.2 1.6644850 23.778357 56.60594
Dim.3 0.8558298 12.226141 68.83208
Dim.4 0.7546476 10.780680 79.61276
Dim.5 0.5946997 8.495710 88.10847
Dim.6 0.4386274 6.266106 94.37458
Dim.7 0.3937795 5.625421 100.00000

We can see the elbow shows the optimal dimensions are three dimensions with almost 69% explained variance.
If we only look at the eigenvalues then our rule of thumb is to pick the dimensions with an eigenvalue >=1,
which in this case is two dimensions. Those two dimensions only account for 57% of the total variance, which
isn’t that high. As it is hard to understand a plot with three dimensions we visualize our reduced data in
two dimensions.

res_pca %>%
fviz_pca_var(alpha.var = '"cos2",
col.var = "contrib",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4EO07"),
repel = TRUE,
ggtheme = theme_gray())

Variables — PCA

1
1.0- :
I cos2
1
: milestones 03
! > 0.4
0.5- .
: —> 0.5
. : —> 0.6
S .
8\0 ! Is_top500 — 07
- 1
™
N 00—"--=--==-=-=-=-=-=-=-=-= i e e R
AN .
= : contrib
a | I 17.5
: _ 15.0
-0.5- 1 age_last\funding/year
I ' 125
1
I 10.0
1
: e 7.5
-1.0- 1
|

Dim1 (32.8%)

From the plot we can see, that the x-axis split our seven variables into two groups. Where the ones involving
funding or money is below or on the x_axis. funding rounds lies on the x-axis which indicates that it is
mostly explained by the first dimension. Variables like milestones, relationships, is_ top500 and is_ 0:3 are
above the x-axis. It can be said about our variables, that the less opaque the arrow the higher the cos2 and
thereby a higher representation of the variable in the principal components we have used eg. is_ top500 is
not as well explained by the first two principal components as the other variables. Contrib shows almost the
same as it is just (cos2*100)/(total cos2 of the component), that is why we see the one which are the most
opaque also being the one with a blue/greenish color.

17

Now we plot all our observations in the two dimensional space and try to split them up by their status of
either being acquired or closed.

res_pca %>%

fviz_pca_biplot(alpha.ind = "cos2",

habillage = data %>} pull(status) %>% factor(),

addEllipses = TRUE,

geom = "point",

ggtheme = theme_gray())

PCA - Biplot

6-

milestones

relationships

Groups

IE' acquired

;\3 Iz' closed

«Q

]

o

%, cos2

fa __|Uhding_rounds ° 025
e 0.50
e 0.75

\funding_year *

-2.5 0.0 2.5 5.0 7.5
Dim1 (32.8%)

The plot shows that the red which is the firms who have been aquired tends to be more to the right, which
indicates that they have reached more milestones, had more relationships and had a higher tendency to be
a toph00 startup. But to conclude the PCA doesn’t really separate the firms by status.

We’ve tried doing the ellipses with other categories such as state of origin and type of industry, but neither
one seems to show intuitive results.

Next we are going to use another dimensionality reduction method namely UMAP to see if it does a better
job.

UMAP

First we create the UMAP object and remember to scale it. n_ neigbors shows the size of the local neigh-
borhood. A smaller value will result in more data being preserved. We set metric to “cosine”, which is just

18

a method of calculating the distances between observations. min_ dist just shows the minimum amount of
distance allowed between the observations.

res_umap <- data_num %>

umap (n_neighbors = 15,
metric = "cosine",

min_dist = 0.01,

scale = TRUE)

Then we plot it in a two dimensional space and fill our observations by status.
res_umap %>%

as_tibble() %>%

ggplot(aes(x = V1, y = V2, fill = data$status)) +
geom_point(shape = 21, alpha = 0.5)

Warning: The “x°~ argument of “as_tibble.matrix () must have unique column names if ~.name_repair” is

Using compatibility ~.name_repair’.

10-

data$status

© acquired

V2

0- © closed

g

_10-

-5 0 5 10 15
V1

UMAP seems to separate the observations better as we kinda have 4 clusters here. But they are not separated
that well between closed and acquired. Again we have used various categories in the “fill” of the function,
but the others didn’t seem to show a very meaningful separation.

K-means clustering

Now we wanna look at clustering of our data to see, whether our data are clustered by status or not, we
make clusters both on our data and on our PCA data and we both make K-means clustering and hierarchical
clustering. First K-means clustering on our dataset. We set the method to be used for estimating the optimal
number of clusters to “wss” which is the total within sum of square.

19

data_num %>%
scale() %>%
fviz_nbclust (kmeans, method = "wss")

Optimal number of clusters

6000 -

5000 A

4000 -

Total Within Sum of Square

3000 1

1 2 3 4 5 6 7 8 9 10
Number of clusters k

Seems like the optimal number of clusters is somewhere around 3 clusters, but as we want to show whether
we can make two clusters which are separated by status which only has two different values “acquired” and
“closed” we move on with two clusters.

We set the number of clusters (centers) to 2. We set nstart to 20, which indicates how many different random

starting points the test will do in order to select the best one.

res_km2 <- data_num %>%
scale() %>%
kmeans (centers = 2, nstart = 20)

Now we plot the clusters.

res_km2 %>Y%
fviz_cluster(data = data_num ,
ggtheme = theme_gray())

20

Cluster plot

6_

4_
s 2-
o cluster
& [@] 1
(g}
E o- [4] -
a

2

4

Dim1 (32.8%)

K-means makes 2 clusters, but to observe the separation more clearly, we take a look at the result in a table
by extracting the cluster number and putting into our data set.

datal[,"cluster2"] <- res_km2$cluster

table(data$cluster2, data$status)

##

acquired closed
1 372 271
2 221 54

The clusters don’t seem to be separated by the status of the startup at all. We can see that one of the
clusters both has most startups who have been acquired and closed.

K-means clustering after dimensionality reduction

Now we try to run K-means again - this time on the dimensionality reduced data, so we extracted the
first two components as the eigenvalue limited the number of dimensions to two, even though the screeplot
showed three dimensions (we performed K-means clustering with three dimensions, but didn’t get separated
clusters) and put them into a new data set called data_ pca.

pcal = res_pcaindcoordl[,1]
pca2 = res_pcaindcoordl[,2]
data_pca = data.frame(pcal, pca2)

data_pca %>’
scale() %>%

21

fviz_nbclust(kmeans, method = "wss")

Optimal number of clusters

|_\
al
o
o

1000 A

Total Within Sum of Square

500+

1 2 3 4 5 6 7 8 9 10
Number of clusters k

We can now see the elbow is formed at 3 clusters, but we still move on with 2 as we want to try and separate
by status.
res_km_pcal <- data_pca %>%

scale() %>%
kmeans (centers = 2, nstart = 20)

res_km_pcal %>/

fviz_cluster(data = data_pca,
ggtheme = theme_gray())

22

Cluster plot

487

759
ser 32 5 552
789 354 646 . 630

0 78§ '393242%% %95 co5 809 - .

203522 " 382238 .
8 Sl ° 41905 389
5 599758 368 165 o . o5 171
555 37;1 7%1@5332@%@ . 0 40 o
3 10 244 4987 ° . .
4@5@180 * 644 G0 D

7 cluster
o]+
(4] 2

pca2

pcal

Clustering with the pca data seems to make two clusters who are much more separated, so we again check
in a table to to see how well they are separated by status.

datal,"cluster_pca2"] <- res_km_pcal$cluster

table(data$cluster_pca2, data$status); table(data$cluster2, data$status)

##

acquired closed
1 352 144
2 241 181
##

acquired closed
1 372 271
2 221 54

Running it on the dimensionality reduced data seems to have separated the firms by status a little worse
then by running it on the entire data. We see the acquired firms are almost identical between the two, but
the number of closed firm in each clusters has come closer to each other instead of farther away.

Now we will try to use a different clustering method namely hierarchical clustering.

Hierarchical clustering

We make the hclust object and put stand equal to true as it will scale our data.

fviz_nbclust(data_num, FUN = hcut, method = "wss")

23

Optimal number of clusters

750000000000 -

500000000000 -

250000000000 -

Total Within Sum of Square

1 2 3 4 5 6 71 8 9 10
Number of clusters k

We see that the optimal amount of clusters is 3, but again we use 2.
res_hc = data_num %>

hcut (hc_func = "hclust", k = 2, stand = TRUE)
Then we make a dendogram.

res_hc %>%
fviz_dend(rect = TRUE, cex = 0.5)

Warning: “guides(<scale> = FALSE) " is deprecated. Please use “guides(<scale>
"none") instead.

24

Cluster Dendrogram

40~

30-

10-

The dendogram can be a bit of a mess when you deal with a high number of observations, but we can clearly
see that by dealing with only two clusters we separate our data high up in the dendogram, which basically
means that the two clusters are hard to distinguish between, which partly explains why we are having a hard
time separating our startups by status. But as before we can plot our clusters in two dimensional space.
res_hc %>

fviz_cluster(data = data_num, ggtheme = theme_gray())

25

Cluster plot

6_

4_
s 2-
o cluster
& [@] 1
(g}
E o- [4] -
a

2

4

Dim1 (32.8%)

The plot in itself looks like the two clusters are fairly overlapped which might be due to us forcing 2 clusters
on it instead 3 as the screeplot showed, but let us take a look at how well it separated the firms by status.

datal[,"cluster_hclust2"] <- res_hc$cluster

table(data$cluster_hclust2, data$status)

##

acquired closed
1 57 117
2 536 208

Again, it seems that the the hierarchical clustering of the data doesn’t really separate the startups in different
clusters, although cluster 1 contains the largest amount of closed startups while cluster 2 contains the largest
amount of acquired startups. Lastly let us try hclust on the PCA data.

Hierarchical clustering after dimensionality reduction

We could do this as we did with K-means but hclust has this build in function which knows where to get the
PCA’s and then cluster them.

res_hcpc = res_pca %>%
HCPC(nb.clust = 2, graph = FALSE)
Then we plot it

res_hcpc %>
plot(choice = "3D.map")

26

Hierarchical clustering on the factor map

cluster 1
cluster 2
< -
ST
(qV]
Nt
o
Fi 1 ~
g =21 S
[&))
@ 9 ™
e o (a2]
< 6
o T o
81 £
o ()]
© -4 -2
i 0
Dim 1 (32.83%) The

plot is a bit of a mess because it also plots the trees and it is hard to distinguish where the black dots starts
and where the red begins, so it seems like the clusters are not ideal, this might again be due to the fact
stated above.

datal,"cluster_hclust_pca2"] <- res_hcpc$data.clust$clust

table(data$cluster_hclust_pca2, data$status); table(data$cluster_hclust2, data$status)

##

acquired closed
1 59 115
2 534 210
##

acquired closed
1 57 117
2 536 208

After using PCA it looks like “acquired” is separated more clearly into one cluster, but is still having trouble
separating “closed” into one cluster. The variables used in this analysis wasnt able to capture the effects
that are crucial to whether a start up is getting acquired or closed. This might be due to that fact that a
lot more variables plays a part in this and maybe also a bit of luck, which cant be quantified.

Now we move on to supervised machine learning.

SML

We start by creating a new dataset and renaming our “status” variable to “y” for convenience, because this
is the variable we want to predict.

data_sml= data %>%
rename(y = status) %>’
select(y, total, funding rounds, relationships, milestones, is_top500, “is_0:37,
age_last_funding_year)

27

glimpse(data_sml)

Rows: 918

Columns: 8

$y <chr> "acquired", "acquired", "acquired", "acquired", ~
$ total <dbl> 375, 40100, 40000, 1300, 7500, 26000, 3410~
$ funding rounds <dbl> 3, 2 3, 3, 3, 3, 3, 1, 3, 5, 1, ~
$ relationships <dbl> 3, 5, 2, 3, 6, 25, 13, 14, 15, 1~
$ milestones <dbl> 3, 1, 1,1, 2, 3, 4, 4, 3, 2, 0, 3, 1, 0, ~
$ is_top500 <dbl> o0, 1, 1,1, 1, 1, 1,1, 1,1, 1,1, 0, 1, 1, 0, ~
$ "is_0:3° <dbl>» 0, 0, 1, 0, 1, O, 1, 0, O, 1, O, O, O, 1, O, O, ~
$ age_last_funding_year <dbl> 3.0027, 9.9973, 1.0329, 5.3151, 1.6685, 4.5452, ~

Training & Test split
Just to get an idea how the y variable is split between acquired and closed we can do a histogram

data_sml %>%
ggplot(aes(y, fill= y)) +
geom_bar ()

600 -

400 -
- y
C .
§ . acquired
. closed
200 -
O-
acquired closed
y

We can see there are more observations under acquired than closed, so to be certain that the training and
test data will be as similar as possible we set the strata argument equal to y when we split the data.

set.seed(123)

data_split <- initial_split(data_sml, prop = 0.75, strata = y)

28

data_train <- data_split %>J), training()
data_test <- data_split %>% testing()

Preprocessing recipe

To automate the process we create a recipe that will procces the data using: Step_log, which will log
transform data (usefull as many of our variables are right-skewed) step_ center, Centers all numeric variables
to mean = 0. step_ scale, scales all numeric variables to sd = 1. step_dummy converts categorical/factor
variables into binary dummies.

data_recipe <- data_train %>’
recipe(y ~.) %>%
step_log(total, funding rounds) %>%
step_center(all_numeric(), -all_outcomes()) %>%
step_scale(all_numeric(), -all_outcomes()) %>%
step_dummy(all_nominal(), -all_outcomes()) %>%
prep()

summary (data_recipe)

A tibble: 8 x 4

variable type role source

<chr> <chr> <chr> <chr>

1 total numeric predictor original
2 funding_rounds numeric predictor original
3 relationships numeric predictor original
4 milestones numeric predictor original
5 is_top500 numeric predictor original
6 is_0:3 numeric predictor original
7 age_last_funding_year numeric predictor original
8 y nominal outcome original

Defining the models
We will now start specifying our models as follows:
1. pick a model type

o Logistic regression

e Decision tree

e XGBoost

e K- nearest neighboors
e Random forrest

2. set the engine: the softwear used to fit the model
3. set the mode: which in this case will be classification.
Logistic Regression

model_lg <- logistic_reg(mode = 'classification') %>%
set_engine('glm', family = binomial)

29

Decision tree

model_dt <- decision_tree(mode = 'classification',
cost_complexity = tune(),
tree_depth = tune(),
min_n = tune()
) B>

set_engine('rpart')

Extreme Gradient Boosted Tree (XGBoost)

model_xg <- boost_tree(mode = 'classification',
trees = 100,
mtry = tune(),
min_n = tune(),
tree_depth = tune(),
learn_rate = tune()
) 5>

set_engine ("xgboost")

K-nearest neighbor

model_knn <-
nearest_neighbor(neighbors = 4) %>}, # we can adjust the number of neighbors
set_engine("kknn") %>%
set_mode("classification")

Random forest

model_rf <-
rand_forest() %>%
set_engine("ranger", importance = "impurity") %>%
set_mode("classification")

Define workflow

We will now define the workflow of the model by adding first the recipe to a general workflow, and then
using this to create a workflow for each model.

workflow_general <- workflow() %>’
add_recipe(data_recipe)

workflow_lg <- workflow_general 7>%
add_model (model_lg)

workflow_dt <- workflow_general %>
add_model (model_dt)

workflow_xg <- workflow_general 7>
add_model (model_xg)

workflow_knn <- workflow_general 7>
add_model (model_knn)

30

workflow_rf <- workflow_general 7>
add_model (model_rf)

Hyperparameter Tuning

As the parameters in the decision tree and XGBoost model are set to tune(), we will now find the optimal
values for the parameters.

Validation Sampling (N-fold crossvlidation)

We use k-fold crossvalidation to build a set of 5 validation folds with the function vfold cv. We also use
stratified sampling by setting the strata argument to y. We set repeats equal to 3. We dont have to use
boosttraps as we have enogh observations.

set.seed(100)

data_resample <- data_train 7>
vfold_cv(strata = y,
v = 3,
repeats = 3)

Hyperparameter Tuning: Decision Tree
First we tune the decision tree, using the tune grid function where we first specify the workflow, next we
give it the resampled data, and last the grid means give us 10 different versions of every tuneable parameters.

tune_dt <-
tune_grid(
workflow_dt,
resamples = data_resample,
grid = 10
)

Warning: package 'rlang' was built under R version 4.0.2

Warning: package 'vctrs' was built under R version 4.0.2

We can now see that the tuned parameters are plotted with different values compared to the accuracy and
roc-auc values.

tune_dt 7> autoplot()

31

)st—=Complexity Parameter (log-1 Minimal Node Size Tree Depth

0.75-)))
o o ([]
° ° °
0.74- 8
2
[] [}) B
(9]
<
-0 ° °
0.73 [] [o [] [] o
[] o o
[]] (]
(] o []
o o o
0.76 -
0.75 - (] o []
° ° . ° e ° ® 1 ° ° ® e _
° ° ° 3
0.74 - Io
® ° ° 2
(¢]
0.73-
0.72-
[] [] o
[] o []
-10.0 -7.5 -5.0 -2.5 10 20 30 40 5 10 We

will now use the select_ best function to select the parameters that maximize the area under the roc curve.

best_param_dt <- tune_dt >} select_best(metric = 'roc_auc')
best_param_dt

A tibble: 1 x 4
cost_complexity tree_depth min_n .config

<dbl> <int> <int> <chr>
1 0.000000167 6 10 Preprocessorl_Model0O8
tune_dt %> show_best(metric = 'roc_auc', n = 1)

A tibble: 1 x 9

cost_complexity tree_depth min_n .metric .estimator mean n std_err
<dbl> <int> <int> <chr> <chr> <dbl> <int> <dbl>
1 0.000000167 6 10 roc_auc binary 0.763 9 0.0113
... with 1 more variable: .config <chr>

Hyperparameter Tuning: Random Forest

We now do the same for the Random Forest model again using the tune_ grid function where we first specify
the workflow, next we give it the resampled data, and last the grid means give us 10 different versions of
every tuneable parameters.
tune_xg <-
tune_grid(
workflow_xg,
resamples = data_resample,
grid = 10
)

1 Creating pre-processing data to finalize unknown parameter: mtry

32

tune_xg %>% autoplot()

andomly Selected Predic Learning Rate (log—10) Minimal Node Size Tree Depth
° ° ° °
0.76 -
° T ° o o o ° ° o
e © L) ® o ° °
° ° °
072- ® ° ° °
0.68 -
° ° e e e o ° °
0.8- ° ° °
LR ‘e’ e %’ e e oo
° ° °
07-° ° ° °
0.6~
0.5- ° ° ° °
2 4 6 -75 -5.0 -25 10 20 30 5 10
best_param_xg <- tune_xg %>’ select_best(metric = 'roc_auc')

best_param_xg

A tibble: 1 x 5

mtry min_n tree_depth learn_rate .config

<int> <int> <int> <dbl> <chr>

1 3 21 6 0.0000000709 Preprocessorl_Model08
tune_xg %>/, show_best(metric = 'roc_auc', n = 1)

A tibble: 1 x 10

mtry min_n tree_depth learn_rate .metric .estimator mean n std_err
<int> <int> <int> <dbl> <chr> <chr> <dbl> <int> <dbl>
1 3 21 6 0.0000000709 roc_auc binary 0.799 9 0.00785
... with 1 more variable: .config <chr>

Fit models with tuned hyperparameters

We now fit the best parameters into the workflow of the two models.

workflow_final_dt <- workflow_dt 7>%
finalize_workflow(parameters = best_param_dt)

workflow_final_xg <- workflow_xg %>%
finalize_workflow(parameters = best_param_xg)

33

Aoeinooe

one 20l

Evaluate models

here we us the resampled data to evaluate the models.

Logistic regression

We use our workflow object to perform resampling.

see the complete list of all possible metrics.

Note that Cohen’s kappa coefficient () is a similar measure to accuracy, but is normalized by the accuracy
that would be expected by chance alone and is very useful when one or more classes have large frequency

distributions. The higher the value, the better.

log_res <-
workflow_lg %>%
fit_resamples(
resamples = data_resample,
metrics = metric_set(
recall, precision, f_meas,
accuracy, kap,
roc_auc, sens, spec),
control = control_resamples(
save_pred = TRUE)
)

log_res 7>, collect_metrics(summarize = TRUE)

A tibble: 8 x 6

.metric .estimator mean n std_err
<chr> <chr> <dbl> <int> <dbl>
1 accuracy binary 0.768 9 0.00768
2 f_meas binary 0.831 9 0.00526
3 kap binary 0.464 9 0.0198
4 precision binary 0.786 9 0.00796
5 recall binary 0.883 9 0.00915
6 roc_auc binary 0.804 9 0.0108
7 sens binary 0.883 9 0.00915
8 spec binary 0.558 9 0.0229

Model coefficients we save model coefficients for a

Furthermore, we use metric_set() to choose some
common classification performance metrics provided by the yardstick package. Visit yardsticks reference to

.config

<chr>
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell

fitted model object from a workflow using the same

code as before only with one exception using extract and our new function.

get_model <- function(x) {
pull_workflow_fit(x) %>% tidy()
}

log_res_2 <-
workflow_lg %>%
fit_resamples(
resamples = data_resample,
metrics = metric_set(
recall, precision, f_meas,
accuracy, kap,
roc_auc, sens, spec),

34

control

)

! Foldil,
Pleas...

! Fold2,
Pleas...

! Fold3,
Pleas...

! Foldl,
Pleas...

! Fold2,
Pleas...

! Fold3,
Pleas...

! Foldil,
Pleas...

! Fold2,
Pleas...

! Fold3,
Pleas...

= control_resamples(
save_pred = TRUE,
extract = get_model)

Repeatl

Repeatl:

Repeatl:

Repeat?2:

Repeat2:

Repeat?2:

Repeat3:

Repeat3:

Repeat3

: internal:

: internal:

internal:

internal:

internal:

internal:

internal:

internal:

internal:

“pull_workflow_fit()~ was

“pull_workflow_fit()~ was

“pull_workflow_fit() "~ was

“pull_workflow_fit() "~ was

“pull_workflow_fit()~ was

“pull_workflow_fit() "~ was

“pull_workflow_fit() "~ was

“pull_workflow_fit()~ was

“pull_workflow_fit() "~ was

deprecated

deprecated

deprecated

deprecated

deprecated

deprecated

deprecated

deprecated

deprecated

We can now see the estimate std.error and t-statistic/p-value for each variable.

log_res_2%.extracts[[1]1][[1]]

[[1]]

A tibble: 8 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -1.05 0.146 -7.20 6.00e-13
2 total -0.331 0.168 -1.97 4.90e- 2
3 funding_rounds -0.147 0.147 -1.00 3.16e- 1
4 relationships -1.46 0.261 -5.62 1.95e- 8
5 milestones -0.388 0.162 -2.40 1.64e- 2
6 is_topb00 -0.355 0.128 -2.78 5.36e- 3
7 "is_0:3" 0.0519 0.140 0.370 7.11e- 1
8 age_last_funding year 0.176 0.157 1.13 2.60e- 1
all_coef <- map_dfr(log_res_2$.extracts, ~ .x[[11]1[[1]])

Show all of the resample coefficients for a single predictor:
filter(all_coef, term == "relationships")

A tibble: 9 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl>

1 relationships -1.46 0.261 -5.62 0.0000000195

2 relationships -1.12 0.245 -4.58 0.00000471

35

in

in

in

in

in

in

in

in

in

workflows

workflows

workflows

workflows

workflows

workflows

workflows

workflows

workflows

3 relationships -0
4 relationships -1
5 relationships -1
6 relationships -0
7 relationships -1
8 relationships -1.
9 relationships -1

Decision tree

dt_res <-
workflow_final dt %>%
fit_resamples(

.982
.24
.33
.997
.09

10

.38

resamples = data_resample,
metrics = metric_set(

recall, precision, f_meas,

accuracy, kap,

roc_auc, sens, spec),
control = control_resamples(save_pred = TRUE)

)

.256
.260
.268
.235
.243
.255
.258

O O O O O oo

dt_res 7>} collect_metrics(summarize = TRUE)

A tibble: 8 x 6

#it .metric .estimator mean
<chr> <chr> <dbl>
1 accuracy binary 0.750
2 f_meas binary 0.818
3 kap binary 0.420
4 precision binary 0.770
5 recall binary 0.874
6 roc_auc binary 0.763
7 sens binary 0.874
8 spec binary 0.523
XGboost

xgb_res <-

workflow_final_xg %>%
fit_resamples(

resamples = data_resample,
metrics = metric_set(

recall, precision, f_meas,

accuracy, kap,

roc_auc, sens, spec),
control = control_resamples(save_pred = TRUE)

)

A
[N
[=]
ct
v B

© © © © © © © ©
O O O O O O O O

.84 0.000121

.79 0.00000168
.97 0.000000664
.23 0.0000230
.48 0.00000732
.29 0.0000175
.35 0.0000000863

std_err .config

<dbl>

.00418
.00360
.0105
.00621
.0104
.0113
.0104
.0182

xgb_res >% collect_metrics(summarize = TRUE)

A tibble: 8 x 6

.metric .estimator mean

<chr> <chr>
1 accuracy binary

<dbl>
0.760

<chr>

Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell

n std_err .config

<int>

<dbl>

<chr>

9 0.00645 Preprocessorl_Modell

36

2 f_meas binary 0.828 9 0.00452
3 kap binary 0.440 9 0.0157
4 precision binary 0.773 9 0.00524
5 recall binary 0.890 9 0.00604
6 roc_auc binary 0.797 9 0.00739
7 sens binary 0.890 9 0.00604
8 spec binary 0.523 9 0.0136
KNN

knn_res <-

workflow_knn 7>

fit_resamples

(

resamples = data_resample,

Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell

metrics = metric_set(
recall, precision, f_meas,
accuracy, kap,
roc_auc, sens, spec),
control = control_resamples(save_pred = TRUE)

)

Warning: package 'kknn' was built under R version 4.0.2

knn_res %>} collect_metrics(summarize = TRUE)

A tibble: 8 x 6

.metric .estimator mean n std_err .config

<chr> <chr> <dbl> <int> <dbl> <chr>

1 accuracy binary 0.690 9 0.00619 Preprocessorl_Modell
2 f_meas binary 0.765 9 0.00469 Preprocessorl_Modell
3 kap binary 0.311 9 0.0150 Preprocessorl_Modell
4 precision binary 0.750 9 0.00588 Preprocessorl_Modell
5 recall binary 0.782 9 0.00730 Preprocessorl_Modell
6 roc_auc binary 0.728 9 0.00748 Preprocessorl_Modell
7 sens binary 0.782 9 0.00730 Preprocessorl_Modell
8 spec binary 0.524 9 0.0158 Preprocessorl_Modell

Random forrest

rf _res <-
workflow_rf
fit_resamples

>h

(

resamples = data_resample,

metrics = metric_set(
recall, precision, f_meas,
accuracy, kap,
roc_auc, sens, spec),
control = control_resamples(save_pred = TRUE)

)
rf_res 7>} collect_metrics(summarize = TRUE)

A tibble: 8 x 6
.metric .estimator mean
<chr> <chr>

n std_err .config
<dbl> <int> <dbl> <chr>

37

1 accuracy binary 0.778 9 0.00542 Preprocessorl_Modell
2 f_meas binary 0.840 9 0.00332 Preprocessorl_Modell
3 kap binary 0.483 9 0.0150 Preprocessorl_Modell
4 precision binary 0.788 9 0.00675 Preprocessorl_Modell
5 recall binary 0.899 9 0.00579 Preprocessorl_Modell
6 roc_auc binary 0.808 9 0.00625 Preprocessorl_Modell
7 sens binary 0.899 9 0.00579 Preprocessorl_Modell
8 spec binary 0.556 9 0.0195 Preprocessorl_Modell

Compare performance

We get a summary for the performed models. We add the model name to each metric to keep the models
appart from each other later on.

log_metrics <-
log_res %>%
collect_metrics(summarise = TRUE) %>%
mutate(model = "Logistic Regression")

rf metrics <-
rf_res >
collect_metrics(summarise = TRUE) %>%
mutate (model = "Random Forest")

xgb_metrics <-
xgb_res >%

collect_metrics(summarise = TRUE) %>%
mutate (model = "XGBoost")

knn_metrics <-
knn_res %>
collect_metrics(summarise = TRUE) %>%
mutate (model = "Knn")

dt_metrics <-
dt_res %>%
collect_metrics(summarise = TRUE) %>%
mutate(model = "Decision tree")

We now bind the rows for the above metricies and create a dataframe, we then change the data structure
and show the mean_f meas score for each model which include the precision and recall score.

Precision quantifies the number of positive class predictions that actually belong to the positive class. Recall
quantifies the number of positive class predictions made out of all positive examples in the dataset. F-Measure
provides a single score that balances both the concerns of precision and recall in one number.

model_compare <- bind_rows(
log_metrics,
rf metrics,
xgb_metrics,
knn_metrics,
dt_metrics,

)

model_comp <-

38

model_compare %>Y%
select (model, .metric, mean, std_err) 7>

pivot_wider (names_from = .metric, values_from = c(mean, std_err))

model_comp %>%
arrange (mean_f_meas) %>%
mutate(model = fct_reorder(model, mean_f_meas)) %>%
ggplot (aes(model, mean_f_meas, fill=model)) +
geom_col() +
coord_flip() +
scale_fill_brewer(palette = "Blues") +
geom_text (

size = 3,
aes(label = round(mean_f_meas, 2), y = mean_f_meas + 0.08),
vjust = 1

Random Forest -

0.84

Logistic Regression - 0.83
o)

38 XGBoost - 0.83
S

Decision tree - 0.82
Knn - 0.77
1 1 1 1
0.00 0.25 0.50 0.75

mean_f_meas

We will now show the mean area under the curve for each of the models.

model_comp %>%
arrange (mean_roc_auc) %>%
mutate(model = fct_reorder(model, mean_roc_auc)) %>%
ggplot (aes(model, mean_roc_auc, fill=model)) +
geom_col() +
coord_flip() +
scale_fill_brewer(palette = "Blues") +

model

Knn

Decision tree
XGBoost

Logistic Regression

Random Forest

model

Logistic Regression -

geom_text (
size = 3,

aes(label = round(mean_roc_auc, 2), y =

vjust = 1

Random Forest -

XGBoost -

Decision tree -

Knn -

Choose model

Log-reg model

Performance metrics

log_res %>%

A tibble:

##
##
##
##
##
##
##
#
##
##

0 ~NO O WN -

.metric
<chr>
accuracy
f _meas
kap
precision
recall
roc_auc
sens

spec

8 x 6

.estimator mean

<chr>

binary
binary
binary
binary
binary
binary
binary
binary

<dbl>
.768
.831
.464
.786
.883
.804
.883
0.558

O O O O O O o

0.50 0.75

mean_roc_auc + 0.08),

0.81

0.8

0.8

0.76

0.73

mean_roc_auc

collect_metrics(summarize

A
[N
B
ct
v B

© © © © O OV OV ©

Show performance for every single fold:

= TRUE

std_err
<dbl>
.00768
.00526
.0198
.00796
.00915
.0108
.00915
.0229

O O O O O O oo

)

.config

<chr>
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell
Preprocessorl_Modell

40

model

Knn

Decision tree
XGBoost

Logistic Regression

Random Forest

Show average performance over all folds (note that we use log_res):

log_res %>% collect_metrics(summarize = FALSE)

A tibble: 72 x 6

#it id id2 .metric .estimator .estimate .config

<chr> <chr> <chr> <chr> <dbl> <chr>

1 Repeatl Foldl recall binary 0.872 Preprocessorl_Modell
2 Repeatl Foldl precision binary 0.796 Preprocessorl_Modell
3 Repeatl Foldl f_meas binary 0.832 Preprocessorl_Modell
4 Repeatl Foldl accuracy binary 0.773 Preprocessorl_Modell
5 Repeatl Foldl kap binary 0.483 Preprocessorl_Modell
6 Repeatl Foldl semns binary 0.872 Preprocessorl_Modell
7 Repeatl Foldl spec binary 0.593 Preprocessorl_Modell
8 Repeatl Foldl roc_auc binary 0.789 Preprocessorl_Modell
O Repeatl Fold2 recall binary 0.845 Preprocessorl_Modell
10 Repeatl Fold2 precision binary 0.796 Preprocessorl_Modell

... with 62 more rows

Collect model predictions To obtain the actual model predictions, we use the function col-
lect_ predictions and save the result as log_ pred:

log_pred <-
log_res %>%
collect_predictions()

Confusion Matrix

We can now use our collected predictions to make a confusion matrix

log_pred %>
conf_mat(y, .pred_class)

Truth

Prediction acquired closed
acquired 1176 322
closed 156 407

And we can also visualize

log_pred %>%
conf_mat(y, .pred_class) %>%
autoplot(type = "mosaic")

41

acquired -

Prediction

closed -

acquJired closed
Truth

log_pred %>%

conf_mat(y, .pred_class) %>/
autoplot(type = "heatmap")

42

322

acquired -
c
i)
°
i)
o
(A
closed - 156 407
acqllired clolsed
Truth
ROC curve

We will now create the ROC curve with 1 - specificity on the x-axis (false positive fraction = FP/(FP+TN))
and sensitivity on the y axis (true positive fraction = TP/(TP+FN)).

log_pred %>%
roc_curve(y, .pred_acquired) %>7
autoplot ()

43

1.00 4
0.754
2
=
% 0.50 1
c
O
(2]
0.25 4
0.004 .1
0.00 0.25 0.50 0.75 1.00
1 - specificity

We can create the same curve for each of the folds used from the resampled data.
log_pred %>
group_by(id) %>%
roc_curve(y, .pred_acquired) %>’
autoplot ()

44

1.00
0.75 1
id
2
= — Repeatl
% 0.504
c — Repeat2
3
— Repeat3
0.25 A
0.004 .
0.00 0.25 0.50 0.75 1.00

1 - specificity
predicted probability distributions for our two classes.

log_pred %>%

ggplot() +
geom_density(aes(x = .pred_acquired,
£ill = y),
alpha = 0.5)

45

We can plot the

2.0-

15-
=
7
c
]
©10-

0.5-

0.0-

0.00 0.25 0.50 0.75
.pred_acquired

XGboost model
Performance metrics
Show average performance over all folds.
xgb_res >/, collect_metrics(summarize = TRUE)
A tibble: 8 x 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 accuracy binary 0.760 9 0.00645 Preprocessorl_Modell
2 f_meas binary 0.828 9 0.00452 Preprocessorl_Modell
3 kap binary 0.440 9 0.0157 Preprocessorl_Modell
4 precision binary 0.773 9 0.00524 Preprocessorl_Modell
5 recall binary 0.890 9 0.00604 Preprocessorl_Modell
6 roc_auc binary 0.797 9 0.00739 Preprocessorl_Modell
7 sens binary 0.890 9 0.00604 Preprocessorl_Modell
8 spec binary 0.523 9 0.0136 Preprocessorl_Modell
Show performance for every single fold:
xgb_res %>/, collect_metrics(summarize = FALSE)
A tibble: 72 x 6
#i# id id2 .metric .estimator .estimate .config

<chr> <chr> <chr> <chr>
1 Repeatl Foldl recall binary
2 Repeatl Foldl precision binary

<dbl> <chr>
0.885 Preprocessorl_Modell
0.771 Preprocessorl_Modell

46

acquired

closed

3 Repeatl Foldl f_meas binary 0.824 Preprocessorl_Modell
4 Repeatl Foldl accuracy binary 0.755 Preprocessorl_Modell
b5 Repeatl Foldl kap binary 0.430 Preprocessorl_Modell
6 Repeatl Foldl sens binary 0.885 Preprocessorl_Modell
7 Repeatl Foldl spec binary 0.519 Preprocessorl_Modell
8 Repeatl Foldl roc_auc binary 0.785 Preprocessorl_Modell
O Repeatl Fold2 recall binary 0.872 Preprocessorl_Modell
10 Repeatl Fold2 precision binary 0.759 Preprocessorl_Modell

... with 62 more rows

Collect model predictions
To obtain the actual model predictions, we use the function collect_predictions and save the result as
xgb_ pred:
xgb_pred <-
xgb_res U>%
collect_predictions()

Confusion Matrix

We can now use our collected predictions to make a confusion matrix

xgb_pred %>
conf_mat(y, .pred_class)

Truth

Prediction acquired closed
acquired 1186 348
closed 146 381

And visualize it again

xgb_pred %>
conf_mat(y, .pred_class) %>
autoplot(type = "mosaic"

47

acquired -

Prediction

closed -

acquJired clolsed
Truth

xgb_pred %>%

conf_mat(y, .pred_class) %>/
autoplot(type = "heatmap")

48

348

acquired -
c
i)
°
i)
o
(A
closed - 146 381
acqllired clolsed
Truth
ROC curve

We will now create the ROC curve with 1 - specificity on the x-axis (false positive fraction = FP/(FP+TN))
and sensitivity on the y axis (true positive fraction = TP/(TP+FN)).

xgb_pred %>’
roc_curve(y, .pred_acquired) %>7
autoplot ()

49

1.00

0.75+

0.50

sensitivity

0.25+

0.004 .1

0.00 0.25 0.50 0.75 1.00
1 - specificity

And now using the folds again.

xgb_pred 7>
group_by(id) %>%
roc_curve(y, .pred_acquired) %>’
autoplot ()

50

1.00 -

0.751

0.50

sensitivity

0.25+4

0.004 .

0.00 0.25 0.50 0.75
1 - specificity
the probability distributions for our two classes.

xgb_pred %>

ggplot() +
geom_density(aes(x = .pred_acquired,
£ill = y),
alpha = 0.5)

o1

id

— Repeatl
— Repeat2
— Repeat3

We again show

500000 -

400000 -

300000 -

density

200000 -

100000 -

0.499999 0.500000 0.500001 0.500002
.pred_acquired

Random forrest model
Performance metrics
Show average performance over all folds:

rf_res 7>} collect_metrics(summarize = TRUE)

A tibble: 8 x 6

.metric .estimator mean n std_err .config

<chr> <chr> <dbl> <int> <dbl> <chr>

1 accuracy binary 0.778 9 0.00542 Preprocessorl_Modell
2 f_meas binary 0.840 9 0.00332 Preprocessorl_Modell
3 kap binary 0.483 9 0.0150 Preprocessorl_Modell
4 precision binary 0.788 9 0.00675 Preprocessorl_Modell
5 recall binary 0.899 9 0.00579 Preprocessorl_Modell
6 roc_auc binary 0.808 9 0.00625 Preprocessorl_Modell
7 sens binary 0.899 9 0.00579 Preprocessorl_Modell
8 spec binary 0.556 9 0.0195 Preprocessorl_Modell

Show performance for every single fold:

rf_res %>} collect_metrics(summarize = FALSE)

A tibble: 72 x 6

id id2 .metric .estimator .estimate .config

#i# <chr> <chr> <chr> <chr> <dbl> <chr>

1 Repeatl Foldl recall binary 0.899 Preprocessorl_Modell
2 Repeatl Foldl precision binary 0.764 Preprocessorl_Modell

52

acquired

closed

3 Repeatl Foldl f_meas binary 0.826 Preprocessorl_Modell
4 Repeatl Foldl accuracy binary 0.755 Preprocessorl_Modell
b5 Repeatl Foldl kap binary 0.423 Preprocessorl_Modell
6 Repeatl Foldl sens binary 0.899 Preprocessorl_Modell
7 Repeatl Foldl spec binary 0.494 Preprocessorl_Modell
8 Repeatl Foldl roc_auc binary 0.783 Preprocessorl_Modell
O Repeatl Fold2 recall binary 0.905 Preprocessorl_Modell
10 Repeatl Fold2 precision binary 0.807 Preprocessorl_Modell

... with 62 more rows

Collect model predictions
To obtain the actual model predictions, we use the function collect_predictions and save the result as
log_ pred:

rf_res <-
log_res %>%
collect_predictions()

Confusion Matrix

Create the confusion matrix for the predicted values.

rf_res >
conf_mat(y, .pred_class)

Truth

Prediction acquired closed
acquired 1176 322
closed 156 407

Visualize again

rf_res 7>
conf_mat(y, .pred_class) %>
autoplot(type = "mosaic")

53

acquired -

Prediction

closed -

acquJired closed
Truth

rf_res %>

conf_mat(y, .pred_class) %>/
autoplot(type = "heatmap")

54

322

acquired -
c
i)
°
i)
o
(A
closed - 156 407
acqllired clolsed
Truth
ROC curve

We will now create the ROC curve with 1 - specificity on the x-axis (false positive fraction = FP/(FP+TN))
and sensitivity on the y axis (true positive fraction = TP/(TP+FN)).

rf_res %>%
roc_curve(y, .pred_acquired) %>7
autoplot ()

95

1.00

0.75+

0.50

sensitivity

0.25+

0.004 .1

0.00 0.25 0.50 0.75
1 - specificity

With folds.

rf_res %>
group_by(id) %>%
roc_curve(y, .pred_acquired) %>%
autoplot ()

56

1.00
0.75 1
id
2
= — Repeatl
% 0.504
c — Repeat2
]
— Repeat3
0.25 A
0.004 .
0.00 0.25 0.50 0.75 1.00

1 - specificity

We create the predicted probability distributions for our two classes.
rf_res %>

ggplot() +
geom_density(aes(x = .pred_acquired,
£ill = y),
alpha = 0.5)

57

2.0-

1.5-
2
&2 acquired
9]
T 10- closed
0.5-
0.0-
0.00 0.25 0.50 0.75 1.00

.pred_acquired

Random Forest on test data

We now use the test data by setting the split argument equal to data_ split.

last_fit_rf <- last_fit(workflow_rf,
split = data_split,
metrics = metric_set(
recall, precision, f_meas,
accuracy, kap,
roc_auc, sens, spec)

Q.

)

last_fit_rf %>Y%

collect_metrics()
A tibble: 8 x 4
.metric .estimator .estimate .config
<chr> <chr> <dbl> <chr>
1 recall binary 0.886 Preprocessorl_Modell
2 precision binary 0.810 Preprocessorl_Modell
3 f_meas binary 0.846 Preprocessorl_Modell
4 accuracy binary 0.792 Preprocessorl_Modell
5 kap binary 0.528 Preprocessorl_Modell
6 sens binary 0.886 Preprocessorl_Modell
7 spec binary 0.622 Preprocessorl_Modell
8 roc_auc binary 0.826 Preprocessorl_Modell

We use the pluck function to calculate the variables with the biggest importance for the predicted variable.

o8

last_fit_rf %>
pluck(".workflow", 1) %>%
pull_workflow_fit() %>%
vip(num_features = 7)

Warning: “pull_workflow_fit()~ was deprecated in workflows 0.2.3.
Please use “extract_fit_parsnip()” instead.

relationships -

total -

age_last_funding_year -

milestones -

funding_rounds -

is_top500 -

is_0:3-

20 40 60
Importance

We can also make the confusion matrix using the test data

last_fit_rf %>
collect_predictions() %>%
conf_mat(y, .pred_class) %>%
autoplot (type = "heatmap")

99

acquired -

Prediction

closed - 17

acqllired

And lastly show the ROC curve using the test data.

last_fit_rf %>%
collect_predictions() %>%
roc_curve(y, .pred_acquired) %>/
autoplot ()

Truth

60

31

51

1
closed

sensitivity

1.00

0.75+

0.50

0.25+

0.007 .

0.00 0.25 0.50

1 - specificity

0.75

61

	Loading the data
	Data cleaning / EDA
	Format data
	Geographical visualisation
	Data preparation process

	Unsupervised ML
	PCA
	UMAP
	K-means clustering
	K-means clustering after dimensionality reduction
	Hierarchical clustering
	Hierarchical clustering after dimensionality reduction

	SML
	Training & Test split
	Preprocessing recipe
	Defining the models
	Logistic Regression
	Decision tree
	Extreme Gradient Boosted Tree (XGBoost)
	K-nearest neighbor
	Random forest

	Define workflow
	Hyperparameter Tuning
	Validation Sampling (N-fold crossvlidation)
	Hyperparameter Tuning: Decision Tree
	Hyperparameter Tuning: Random Forest

	Fit models with tuned hyperparameters
	Evaluate models
	Logistic regression
	Decision tree
	XGboost
	KNN
	Random forrest

	Compare performance
	Choose model
	Log-reg model
	Confusion Matrix
	ROC curve

	XGboost model
	Performance metrics
	Collect model predictions
	Confusion Matrix
	ROC curve

	Random forrest model
	Performance metrics
	Collect model predictions
	Confusion Matrix
	ROC curve

	Random Forest on test data

